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Abstract

This paper presents a multilayer differential discrete ordinate method to solve the radiative transfer equation for an absorbing, emit-
ting and scattering inhomogeneous plane parallel medium. This method reduces the integro-differential equation into a set of coupled
first order ordinary differential equations with two point boundary conditions on using a suitable quadrature scheme. These equations
are then solved numerically. Numerical validation of the method for gray medium is done by comparing the results obtained with bench-
mark cases available in the literature. Validation for a non-gray medium is done by considering a problem concerning radiative transfer
from the atmosphere. The brightness temperature at the top of the atmosphere is calculated at various frequencies and validated with
those obtained by several other numerical methods.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The propagation of radiation through a participating
medium has numerous engineering applications such as
atmospheric remote sensing, industrial furnaces, high tem-
perature porous materials, rocket exhaust plumes, fluidized
bed combustors and ablation systems on reentry vehicles.
It is the presence of a medium that complicates the analysis
of radiative transfer. The difficulty arises in handling the
three-dimensional nature of radiation combined with com-
plex mechanisms of absorption, emission and scattering.

The governing equation for radiative transfer in a partic-
ipating medium is an integro-differential equation in terms
of intensity. The solution of such an equation by exact tech-
niques is extremely difficult except for some idealized situa-
tions related to the nature of the medium and geometry of
the problem. Hence, extensive research has been done in
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the development of numerical methods to solve the radia-
tive transfer equations for more involved cases.

Exact solution techniques for the integral equation of
transfer are available for simple cases [1]. In the recent past,
various numerical techniques have been developed which
can easily incorporate important effects such as anisotropy
and non-uniform properties, by maintaining accuracy and
improving computational efficiency.

Several techniques for solving the radiative transfer
equation are currently available, as for example Monte
Carlo method [2], FN method [3], spherical harmonics
method [4], two-flux methods [5], finite volume method
[6], discrete ordinates methods [7–9]. These techniques
employ complicated mathematics and they generally
require extensive programming effort.

The discrete ordinates method solves the radiative trans-
fer equation by reducing it into a set of differential equa-
tions. Chandrasekhar [7] proposed the discrete ordinates
method in his work on stellar and atmospheric radiation.
The numerical analysis of the method for multiple scatter-
ing inhomogeneous media is discussed in detail by Stamnes
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Nomenclature

an expansion coefficients
A elements of matrix A
B elements of the vector B

I intensity, W/m2

L thickness of plane parallel slab, m
M half the order of quadrature
N degree of scattering anisotropy
Pn Legendre polynomials
q radiative heat flux rate, W/m2

R number of layers
T temperature, K
w weights in the numerical quadrature
z Cartesian coordinate, m

Greek symbols

dij Kronecker’s delta
e surface emissivity
h polar angle, radians
l direction cosine with respect to z direction, cosh
q reflectivity

r radiative coefficient
s optical depth, m�1

t frequency of incident radiation, GHz
/ azimuthal angle, rad
U scattering phase function
x single scattering albedo = rs/(ra + rs)

Subscripts

a absorption
B blackbody
inc incident radiation
L depth of medium
r layer number
s scattering
0 coordinate origin

Superscripts

+ upward or positive direction
� downward or negative direction

Fig. 1. Schematic of a plane parallel medium.

K.T.V.S. Abhiram et al. / International Journal of Heat and Mass Transfer 51 (2008) 2628–2635 2629
et al. [8] and Chalhoub [9]. Fiveland [10] demonstrated var-
ious quadrature schemes for the discrete ordinates method
and verified the stability of solution under each scheme.
The accuracy of the method is greatly affected by the quad-
rature employed for angular discretization.

Kumar et al. [11] proposed the differential discrete ordi-
nate method (DDOM) for homogeneous media to solve the
one-dimensional radiative transfer equation. The method-
ology involves the use of a quadrature scheme of the dis-
crete ordinates method to reduce the radiative transfer
equation into a set of ordinary differential equations. The
resultant system of equations is solved by readily available
software routines. This reduces the need for complicated
mathematics and tedious programming effort required on
the part of the user. Also, variations in the boundary con-
ditions and energy equilibrium conditions of the medium
can be easily incorporated. The results of this method for
various quadrature schemes are reported and they agree
with benchmark cases available in the literature, when a
suitable quadrature scheme is used. This method can be
easily implemented with least programming effort without
compromising on the accuracy.

In many practical cases like radiative transfer from the
atmosphere, heat transfer in furnaces and so on, the inter-
vening medium is inhomogeneous i.e., the single scattering
albedo and phase function vary with the optical depth of
the medium. The problem of inhomogeneous medium is
dealt with by dividing the medium into a number of homo-
geneous layers such that the single scattering albedo and
phase function in each layer are constant. The objective of
this paper is to implement the differential discrete ordinate
method to an inhomogeneous medium like the atmosphere.
The accuracy of the method for inhomogeneous media
is tested by considering three different cases for which exact
or benchmark results are available. The method is also
applied to an atmosphere radiative transfer problem, where
the medium is non-gray and the results are compared with
those obtained by several other numerical methods.
2. Formulation

The equation describing the transfer of monochromatic
radiation at a frequency t through a plane parallel medium
(Fig. 1) is given by

l
dI tðst; l;/Þ

dst
¼ �Itðst; l;/Þ þ ð1� xtÞIBt½T ðsmÞ�

þ xt

4p

Z þ1

l0¼�1

Z 2p

/0¼0

Itðst; l
0;/0ÞUt

� ðl0;/0; l;/Þdl0 d/0 ð1Þ
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Here It(st,l,/) is the monochromatic intensity in the direc-
tion l, / at optical depth st, l is the cosine of the polar an-
gle h, / is the azimuthal angle, IBt is the Planck function at
a given frequency t and temperature T, xt is the single scat-
tering albedo and Ut(l0,/0;l,/) is the scattering phase
function. Eq. (1) is also valid in terms of total quantities
for a gray medium when integrated throughout the fre-
quency range. In such a case, the subscript t can be
dropped off from Eq. (1).

The subscript t is omitted hereafter to simplify the nota-
tion and it is invoked whenever required. The azimuthally
independent case of Eq. (1) is considered for further anal-
ysis and the corresponding equation for this case is given
by

l
dIðs; lÞ

ds
¼ �Iðs; lÞ þ ð1� xÞIB

þ x
2

Z þ1

l0¼�1

Iðs; l0Þ:Uðl0; lÞ:dl0 ð2Þ

The scattering phase function for the case of anisotropic
scattering can be approximated as a truncated Legendre
series as,

U ¼
XN

n¼0

anP nðlÞP nðl0Þ; a0 ¼ 1 ð3Þ

where Pns are the Legendre polynomials, ans are expansion
coefficients of the phase function and N is the degree of
anisotropy of scattering.

2.1. Multilayer medium

The single scattering albedo x (s) and phase function
U(l0;l) depend on the spatial location of the medium when
the medium is inhomogeneous. For the case of an inhomo-
geneous medium, the medium is divided into R homoge-
neous layers in which the single scattering albedo and the
phase function are taken to be constant. A schematic of
the multi layer model is shown in Fig. 2. The equation of
transfer for any homogeneous layer r within the boundaries
sr�1 and sr can be written from Eq. (2) as,
Fig. 2. Schematic of a multilayer medium.
l
dI rðs; lÞ

ds
¼ �Irðs; lÞ þ ð1� xÞIB;r

þ xr

2

Z þ1

l0¼�1

Irðs; l0Þ:Urðl0; lÞ:dl0 ð4Þ

The azimuthally independent radiative transfer equation
for any homogeneous layer is analyzed by replacing the
integral over l in Eq. (4) by a quadrature with points lying
between �1 and +1 which results in the following system of
ordinary differential equations:

li
dI i;rðsÞ

ds
¼� I i;rðsÞ þ ð1� xrÞIB;r½T ðsÞ�

þ xr

2

XM

j¼�M
j 6¼0

wjIj;rðsÞUrðlj; liÞ;

i ¼ �M ; . . . ;M ; i 6¼ 0 ð5Þ
where li’s are the quadrature points and wi’s are the corre-
sponding weights of the order 2M quadrature having an
even number of points. The above equations constitute a
system of 2M coupled ordinary differential equations.
For any layer in Fig. 2, Eq. (5) can be written in matrix
form as

dfIg
ds
¼ ½A�fIg þ fBg ð6Þ

where

Aij ¼
1

li
�dij þ

xr

2
wjUðli; ljÞ

h i
;

Bi ¼
1

li
ð1� xrÞIB½T ðsÞ�; i ¼ �M to M
2.2. Boundary conditions

The present method can accommodate various bound-
ary conditions. Different boundary conditions such as dif-
fusely emitting and reflecting boundaries, diffusely
emitting and specular reflecting boundaries have been
employed and the results for the specific case of diffusely
emitting and reflecting boundaries are reported. The azi-
muthally independent boundary conditions for the multi-
layer problem at lower and upper boundaries are
respectively expressed as

I1ð0;lÞ ¼ e0IB;1ð0Þ þ 2q0

Z 1

l0¼0

I1ð0;�lÞ:l0dl0; l > 0 ð7Þ

IRðsR;�lÞ ¼ esR IB;RðsRÞ þ 2qsR

Z 1

l0¼0

IRðsR;þlÞ:l0dl0; l > 0

ð8Þ

where e and q are the diffuse emissivity and reflectivity
of the surfaces at s = 0 and s = sR, respectively. The
black body intensities at the top and the bottom surfaces
are given by the Planck’s black body function on a
spectral basis and by the Stefan–Boltzmann law on total
basis.



Fig. 3. Two layer model with isotropic incidence.
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These boundary conditions in (7) and (8) can be rewrit-
ten in the discretized form as

Iþi;1ð0Þ ¼ e0IB;1ð0Þ þ 2q0

X�1

j¼�M

wjIj;1ð0Þlj; i ¼ 1; . . . ;M ð9Þ

I�i;RðsRÞ ¼ esR IB;RðsRÞ þ 2qsR

XM

j¼1

wjIj;Rð0Þlj; i ¼ 1; . . . ;M

ð10Þ

These boundary conditions indicate that half of the 2M
boundary conditions required to solve the discretized radi-
ative transfer equation are at the lower boundary and the
remaining half are at the upper boundary. Thus, this is a
two point boundary condition problem. As the medium
is divided into a number of layers, one more set of condi-
tions are required for the closure of the problem. This
can be achieved by considering the intensities across the
layer interfaces to be continuous. This continuity condition
can be mathematically represented as

Irðsr;�lÞ ¼ Irþ1ðsr;�lÞ ð10aÞ

The interface conditions actually represent matching of the
intensities at the top of a lower layer with the intensities at
the bottom of the upper layer. There will be M such bound-
ary conditions that close the problem mathematically. For
the satisfaction of the interface conditions, iterations go on
within each layer. Typically, for an optical depth of 20 m�1

and 10 layers, approximately 200 iterations were required
for a typical case. Upon convergence, the change in dimen-
sionless intensities in any layer should be less than 10�6.

2.3. Quadrature scheme

The present methodology is capable of accommodating
different types of quadrature schemes, such as Gaussian,
Lobatto, Double Gauss and Fiveland. These schemes differ
in the values of lj and wj. The Fiveland scheme fixes the
weights and evaluates the points and hence reduces the
degree of the polynomial to be evaluated to determine
the points. The results for the double Gauss scheme are
found to be in good agreement with the exact analytical
solutions and benchmark cases when applied to the prob-
lem of a homogeneous medium. In this scheme, the evalu-
ations of points and weights are done separately over the
half-ranges �1 < l < 0 and 0 < l < 1. The main advantage
of this scheme is that the quadrature points are clustered
both toward jlj = 1 and l = 0. The intensity varies rapidly
around l = 0 and hence the clustering toward l = 0 will
give accurate results [8].

2.4. Solution method

The system of coupled ordinary differential equations
along with appropriate two point boundary conditions
and the energy equilibrium conditions can be solved by
using a commercially available DBVPFD [IMSL-FOR-
TRAN 90] subroutine. This subroutine has already been
extensively tested for numerical accuracy and stability.
The subroutine employs the variable step finite-difference
method. An initial approximation to the solution is required
to obtain the solution. This approximate solution is cor-
rected by a finite-difference technique with deferred correc-
tion allied with a Newton iteration to solve the finite-
difference equations [12]. In a multilayer medium, initially
the intensity field is assumed in each layer and then each
individual layer is solved for new intensity distribution.
The final intensity field is then obtained iteratively by match-
ing the continuity condition [Eq. (10)] at each interface. An
algorithm in FORTRAN is developed using DBVPFD sub-
routine to obtain the results using the present method.
3. Validation

The accuracy of the present method for an inhomoge-
neous medium is first tested for gray participating media
by considering three different problems. The problems con-
sidered for comparison are: (a) two-layer model with isotro-
pic scattering, (b) six layer model with anisotropic scattering
and (c) a semi infinite isotropically scattering atmosphere.
Stamnes and Conklin [13] considered these three cases to
verify the numerical models proposed by them for inhomo-
geneous media. The applicability of the present method for
atmospheric radiative transfer problems where the medium
is non-gray is checked for a simplified three layer atmo-
sphere model. Brightness temperatures (Brightness temper-
ature is defined as the temperature that a blackbody would
need to have in order to emit radiation of the observed inten-
sity at a given wavelength) at various microwave frequencies
are reported along with those available in literature.
3.1. Two layer model with isotropic scattering

The two layer model (Fig. 3) with different values of
scattering albedo in each isotropic scattering layer was
solved by Ozisik and Shouman [14] and the results of hemi-
spherical reflectivity and transmissivity of the slab for
externally incident isotropic radiation were reported. The
hemispherical reflectivity and transmissivity are calculated
from Eqs. (11) and (12) for the following conditions of
the medium:



Table 2
Single scattering albedo and optical depth for each layer

Layer, r xr sr
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(1) No radiation sources in the two layers (no emission
from the medium).

(2) Both the boundaries are transparent.
(3) No emission of radiation from the top boundary

(z = L).
(4) Isotropic radiation of unit intensity is incident on the

bottom transparent boundary (z = 0).

The hemispherical reflectivity of the slab is defined as

Reflectivity ¼ q�ð0Þ
qinc

ð11Þ

The hemispherical transmissivity of the slab is defined as

Transmissivity ¼ qþðLÞ
qinc

ð12Þ

where

q�ð0Þ ¼ 2p
Z 0

l¼�1

Ið0; lÞldl ð13Þ

qþðLÞ ¼ 2p
Z 1

l¼0

IðsL; lÞldl and ð14Þ

qinc ¼ 2p
Z 1

l¼0

1 � l � dl ¼ p ð15Þ

The results from the present work for the 8 stream double
Gauss quadrature are given in Table 1 for a variety of scat-
tering albedos and slab optical depths. The results from the
FN method [14] are also included in the Table. The results
obtained with DDOM agree with the results of the FN

method to the third or fourth decimal place.

3.2. Six layer model with isotropic and anisotropic scattering

Devaux et al. [15] solved a multilayer model for inhomo-
geneous atmospheres using the FN method. In this model,
the atmosphere is divided into six homogeneous layers with
each layer having a different single scattering albedo. An
Table 1
Reflectivity and transmissivity for a two layer model

x1 x2 s1 s2 Reflectivity Transmissivity

DDOMa

(Present)
FN

method
[14]

DDOMa

(Present)
FN

method
[14]

0.8 0.95 0.25 0.25 0.2251 0.2252 0.6504 0.6503
0.6 0.5 0.25 0.25 0.1278 0.1278 0.5476 0.5474
0.5 0.3 0.25 0.25 0.0930 0.0930 0.5131 0.5128
0.8 0.95 0.5 0.5 0.3057 0.3056 0.4597 0.4597
0.6 0.5 0.5 0.5 0.1661 0.1661 0.3205 0.3206
0.5 0.3 0.5 0.5 0.1219 0.1219 0.2834 0.2835
0.8 0.95 1.0 1.0 0.3509 0.3509 0.2476 0.2476
0.6 0.5 1.0 1.0 0.1877 0.1877 0.1164 0.1164
0.5 0.3 1.0 1.0 0.1398 0.1398 0.0930 0.0930
0.8 0.95 1.0 2.0 0.3786 0.3786 0.1600 0.1600
0.6 0.5 1.0 2.0 0.1892 0.1892 0.0420 0.0419
0.5 0.3 1.0 2.0 0.1402 0.1402 0.0300 0.0301

a 8 stream.
anisotropic scattering cold medium is considered and the
same scattering law is applied to all the layers. Both the
boundaries are transparent. There is no emission from
the top most boundary. The incident radiation from the
external source on the bottom boundary is of the form

Ið0; lÞ ¼ lp; l > 0 ð16Þ
The single scattering albedo and optical thickness of

each layer are listed in Table 2. Devaux et al. tabulated
the results of the albedo and transmission factor for isotro-
pic scattering and anisotropic scattering. The expansion
coefficients of the anisotropic scattering phase function
from [15] are given in Table 3. The albedo and transmission
factor are expressed as

Albedo ¼ q�ð0Þ
qþð0Þ ð17Þ

where q�ð0Þ ¼ 2p
R 1

l¼0
Ið0;�lÞldl and qþð0Þ ¼ 2p

R 1

l¼0
I

ð0;lÞldl.

Transmission factor ¼ qþðLÞ
qþð0Þ ð18Þ

where qþðLÞ ¼ 2p
R 1

l¼0
IðsL; lÞldl.

The albedo results obtained for p = 0,1,2 [Eq. (16)]
using the present method for two different types of scatter-
ing are reported in Tables 4 and 5, respectively for the iso-
tropic scattering and anisotropic scattering. Double Gauss
quadrature is employed in this case.

The results obtained by the present method agree to the
second or third decimal place in the case of 4-stream
DDOM with the FN method (benchmark case). The results
of the 8-stream and 16-stream closely agree with those cal-
culated by the FN method [15].
1 0.65 1
2 0.70 2
3 0.75 3
4 0.80 4
5 0.85 5
6 0.90 6

Table 3
Coefficients (an) of phase function

n an

0 1
1 2.00916
2 1.56339
3 0.67407
4 0.22215
5 0.04725
6 0.00671
7 0.00068
8 0.00005



Table 4
Albedo for six layer model for isotropic scattering

p� DDOM (Present) FN method [15]

4-stream 8-stream 16-stream

0 0.2294 0.2280 0.2280 0.2280
1 0.2141 0.2148 0.2148 0.2148
2 0.2090 0.2079 0.2079 0.2079

� Refer Eq. (16).

Fig. 4. Schematic of the three layer atmosphere.

Table 5
Albedo for six layer model for anisotropic scattering

p� DDOM (Present) FN method [15]

4-stream 8-stream 16-stream

0 0.10290 0.10007 0.10005 0.10010
1 0.07937 0.08057 0.08058 0.08059
2 0.07152 0.07052 0.07053 0.07051

� Refer Eq. (16).
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3.3. Isotropically scattering semi infinite atmospheres

Garcia and Siewert [16] used the FN method to solve the
problem of isotropically scattering semi infinite atmosphere
with an exponentially varying single scattering albedo and
isotropic incidence at one boundary. The single scattering
albedo is expressed as,

x ¼ x0 expð�s=SÞ 0 6 x0 6 1 and S > 0 ð19Þ

This problem was solved by Stamnes and Conklin [13]
using the discrete ordinates approach by dividing the atmo-
sphere into a suitable number of homogeneous layers. The
expressions for scattering albedo for each layer xr and
layer optical thickness Dsr are given as [13]

ðDsÞr ¼ s�
expðr=KNÞ

KN expð1=N � 1Þ ð20Þ

xr ¼ x0 expð�ðsp þ sp�1Þ=2SÞ; p ¼ 1; 2 . . . ;K ð21Þ

where K is a shape factor which determines the layer thick-
ness distribution, N is the total number of layers and s* is
the total optical thickness of the atmosphere. Calculations
Table 6
Comparison of albedo values for semi infinite atmospheres with those of Gar

x0 S DDOM 8-stream

Number of layers

10 50 100

0.7 1 0.15022 0.15511 0.15524
10 0.23412 0.23539 0.23543
100 0.25389 0.25406 0.25407

0.9 1 0.21626 0.22407 0.22429
10 0.39204 0.39533 0.39542
100 0.46385 0.46453 0.46455

1 1 0.25576 0.26557 0.26584
10 0.52487 0.53103 0.53121
100 0.73851 0.74194 0.74205
are done for K = 0.2, s* = 30 and for S = 1,10,100. Smal-
ler values of S indicate the most rapid variation of scatter-
ing albedo with optical depth. The present multilayer
method adopts these expressions and the albedos [Eq.
(17)] for 10, 50 and 100 homogeneous layers are calculated
by using the double Gauss quadrature scheme for angular
discretization. The albedo results are given in Table 6 for
two values of x0 and for the 8-stream and 16-stream quad-
rature. The results obtained from the FN method [16] are
also given in Table 6.

The maximum error in albedo associated with 10 homo-
geneous layers is about 4%. The results of 8-stream and 16-
stream quadratures for 100 homogeneous layers agree to
the fourth decimal place of results of Garcia and Siewert.
This shows that finer refinement of the homogeneous layers
to approximate the inhomogeneous medium promises bet-
ter accuracy.

The three different cases that test the accuracy of the
multilayer model show that this model gives fairly accurate
solutions when compared with the benchmark solutions
(FN method). The time taken to obtain the solution is less
when more number of layers is used. This method gives
good results for the case of anisotropically scattering inho-
mogeneous media.
cia and Siewert

DDOM 16-stream Garcia and Siewert [16]

Number of layers

10 50 100

0.15020 0.15507 0.15520 0.15524
0.23410 0.23537 0.23541 0.23542
0.25387 0.25404 0.25404 0.25404

0.21625 0.22403 0.22425 0.22431
0.39203 0.39532 0.39541 0.39545
0.46384 0.46452 0.46454 0.46454

0.25576 0.26553 0.26580 0.26589
0.52486 0.53103 0.53121 0.53127
0.73852 0.74194 0.74205 0.74204



Table 7
Interaction parameters for each layer of the three layer atmosphere model

Frequency (GHz)

6.6 10.7 18.0 37.0 85.6 183.0

0–5 km Layer

rag, km�1 0.02112 0.09124 0.267072 0.542530 1.47147 13.9216
rsg, km�1 0.00088 0.00676 0.053928 0.45747 1.25853 1.4784
g 0.091 �0.17 -0.082 0.010 0.276 0.539

5–8 km Layer

rag, km�1 0.01171 0.035872 0.106875 0.380844 0.90372 7.0300
rsg, km�1 0.000288 0.002128 0.018125 0.215156 1.13628 2.3970
g 0.045 0.014 �0.010 0.091 0.394 0.522

8–11 km Layer

rag, km�1 0.00187 0.004998 0.014191 0.045318 0.1218 3.1624
rsg, km�1 0.000128 0.001002 0.008809 0.136682 1.3282 2.7376
g 0.012 0.031 0.087 0.305 0.516 0.539

Table 8
Brightness temperatures by various methods for different microwave
frequencies

Method Frequency (GHz)

6.6 10.7 18.0 37.0 85.6 183.0

Eddington [17] 203.4 259.9 261.9 216.9 158.3 228.9
16 stream DOM [17] 203.6 260.4 262.4 217.1 159.4 230.0
Finite volume [18] 204.5 260.1 261.5 215.0 156.9 231.6
Doubling & Adding [19] 204.7 260.9 260.9 215.2 156.1 231.3
DDOM (Present) 203.4 260.7 264.2 218.4 159.3 232.3
DDOM (Present) with

Planck
203.5 260.9 264.6 219.3 161.3 237.1
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3.4. Atmospheric radiative transfer problem

To check the applicability of the present method for
atmospheric radiative transfer problems, a simplified three
layer atmosphere is considered [17]. The atmosphere is
modeled as a three layer absorbing, emitting and scattering
participating medium, as shown in Fig. 4. The bottom sur-
face emissivity, temperature and lapse rate are assumed to
be 0.5, 300 K and 5 K/km, respectively. The medium con-
sidered here is a non-gray medium. Hence, the radiative
properties are also a function of wave length or frequency.
A constant relative humidity of 80% is set throughout the
cloud. The non-precipitating cloud liquid water is also
assumed constant with a value of 0.1 g/m3. The hydrome-
teor profile is assumed as 16 mm/h throughout the cloud.
In the bottom most layer, the hydrometeors are assumed
liquid. The hydrometeors are equally divided among liquid
and frozen drops in the middle layer and in the top layer,
all the hydrometeors are assumed frozen. The values of
the absorption coefficient, scattering coefficient, asymmetry
factor for each layer of the atmosphere for various micro-
wave frequencies [17] are given in Table 7. The expansion
coefficients for the anisotropic phase function are taken
from [17].

The radiative transfer equation for the simplified three
layered atmosphere is solved using the multilayer DDOM
to obtain the radiances or intensities leaving the top of
the atmosphere at a viewing angle of 50�.

As already discussed, with the multilayer DDOM giving
accurate solutions for gray participating media, it is
expected to do the same for multilayer non-gray atmo-
spheres too. The brightness temperatures at different
microwave frequencies obtained from the present study
are compared with various models available in literature
(Table 8). For this simple case, the differences in brightness
temperature between present work and the other models
are small at lower frequency channels. However, at higher
frequency channels the maximum difference is about 4 K.
This difference is more pronounced with an increase in
optical thickness and complexity of scattering.
All the methods use the Rayleigh–Jeans approximation
(RJ) to calculate the brightness temperatures. In the present
work, both Planck’s blackbody function and, Rayleigh–
Jeans approximation were used. The brightness tempera-
tures obtained from Planck’s blackbody function from
DDOM are also shown in Table 8. The error in the bright-
ness temperature due to RJ approximation is about 5 K at
183 GHz. This shows that for higher frequency channels the
use of Planck’s blackbody function is a necessity.
4. Conclusions

A multilayer differential discrete ordinates method
(DDOM) for radiative transfer through one-dimensional
inhomogeneous participating media has been proposed
and validated extensively with several results available in
literature. Three validation cases for the multilayer model
are presented to test its capability to handle inhomoge-
neous participating media. The results in all the three cases
agree closely with those of benchmark cases (FN method).
This method contains no complicated mathematics and
avoids tedious programming effort. It can easily incorpo-
rate variations in boundary conditions.

DDOM is then applied to the problem of atmo-
sphere radiative transfer by considering a simple three layer
atmospheric model, in which the medium is non-gray. The
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calculated brightness temperatures at various frequencies
are on par with those obtained by several other numerical
methods available in the literature. It is also shown that cal-
culation of brightness temperature using the Rayleigh–Jeans
approximation leads to an error of about 5 K at higher fre-
quencies (at 183 GHz). Hence, the differential discrete ordi-
nate method can be easily applied to practical radiative
transfer problems to get fairly accurate results with less
effort. The DDOM thus has tremendous application poten-
tial in remote sensing, where many international satellite
missions even today use the highly simplified two stream
analytical Eddington approach. Any method that improves
the accuracy of radiative transfer models for the atmosphere
has the potential to reduce the error in inverting satellite
radiation intensities to vertical profiles of temperature,
humidity, pressure or precipitation parameters.
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